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TURBINE ROTOR-BLADE LOSS33 

By Warner L. Stewart, Warren J. Whitney,  and  James W. Miser 

?I The  use  of an effective  rotor-blade  manenturn  thickness in describ- 
ing  rotor-blade loss characteristics  is  discussed  herein. A derivation 
of  the  necessary  equations  is  presented  for o b t a i n b g  t h i s  momentum 
thickness  for  given  over-all  turbine  performance,  stator perfomnce, 
and  rotor  geometric  quantities. 

I s 

The  effective  rotor-blade  momentum  thickness was calculated  for a 
series  of  transonic  rotors  previously  investigated.  The  ratio of this 
thickness to the  blade m e a n  camber  length is correlated with the sum of. 
the  design  rotor-blade  suction-  and  pressure-surface  diffusion  param- 
eters.  Camparison of this  correlation  with  that  obtained frm low-speed 
two-dimensional  cascade  results  showed similar slopes but  higher  values 
of  momentum  thickness for the  rotors.  Sane of the  possible reasons for 
this  difference  are the inability  to  measure  rotor  surface  diffusions 
and  the  effects of velocity  level,  turbulence, and three-dimensional 
secondary flows. 

A study  of  the  sources  and  significance of the  various  losses oc- 
curring  within  turbine  blade rows is in progress  at  the NACA Lewis lab- 
oratory.  Such  inf'ormatim is necessary ,not only to  aid in the  design of 
efficient  turbines,  but  also to indicate  the  direction  of  future  research. 
The  blade-row  losses  are  described in reference 1 in terns  of  basic 
boundary-layer  parameters. Because the  blade  exit  momentum  thickness is 
the  most  significant  parameter in the determination of the  blade loss 
(ref. 11, an estimation  of the blade loss based on boundary-layer param- 
eters  depends on an accurate  evaluation of the mqentum-tbichess 
parameter. 

II 

Application of boundary-layer  parameters has been  made in studying 
the loss characteristics  of  typical  single-stage  turbine  stators  (refs. 
2 to 4, e.g.1.  Obtaining  the  necessary data was somewhat  simplified  in L 
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that  the  wake  surveys  could  easily  be  taken  downstream of the  blade row. 
Analysia  of  the  results was also straightforward  in  that  inlet  conditions 
were  uniform  and known, and the  stators  operated  with a large  static- 
pressure  drop so that  there was very little, if any, diffusion on the 
blade  surfaces.  Thus  surface  diffusion was not  considered to have any 
appreciable  effect on the  stator-blade loss-. 

Y 

- 

The  analysis.of  rotor loss characteristics  is  considerably  more 
difficult  in  that  rotors  generally  operate  w3th  con~fderably lower reac- 
tian  resulting in higher  blade  surface  diffusion as .canpared  with that 
of  stators. Thus, blade  surface  diffusion becmes a most  important 
parameter in describing  rotor  losses.  The  study of r o t o r  l o s s  chasac- 
teristics  is  then  hampered  by  the  dffficulty i n  experimentally  deter- 
mining the  blade  diffusions.  Further,  effects  of  variations in rotor- 
inlet  conditions  due  to  stator  wakes and secondary-flow  cores,  as  well 
as  secondary  flows  within  the  rotors themselves, make the analysis of 
rotor loss characteristics even more difficult. Finally, the  inability 
to  obtain  accurate  wake  measurements  behind  rotors  makes  the  determina- 
tion  of  rotor loss characterlstics  very  difficult. 

In spite  of  these  difficulties  sane  attempts  have  been  made  to study 
the  sources  and  significance  of  the  losses  occurring  within  rotors. In 
references 5 to 9 a seriee of transonic  turbine rotors are  investigated. 
These  rotors  were all designed  for  approximately  the same speed,  weight 
flaw,  and work output. A considerable  variation  in  rotor sol idi ty  was I 

covered  resulting in a wide range of  design  suction-  and  pressure- 
surface  diffusions.  Although  hub,  mean,  and  tip loss  characteristics 
obtained  frcm  surveys  just  downstream  of  each  of  the rotors of refer- 
ences 5 to 8 were correlated on the  basis of design  suction-surface dif- 
fusion i n  reference 10, the  results  of referece 9 indicate  that, in 
general,  correlations  of  this  type  could not-be expected.because of the 
action  of ro to r  secondary  flow  in  transporting  the  low-momentum fluids 
away fmm their  original radal position. Thus, from  these  considera- 
tions  it is indicated  that a loss p&&meter.based an over-all  perform- 
ance  should  be used in studying  the loss characteristics of rotors. 

r 

An over-all loss parameter of this  type is used in  references 8 
and 9 to  correlate  turbine. loss on the  basis  of  rotor  surface  diffusion. 
Thie  106s parameter,-based on over-all  turbine  efficiency  and  rotor so- 
lidity, was satisfactory  for  the  series of transonic  turbine  rotors  be- 
cause  the  rotative-speeds, work outputs,  and  weight  flows  were similar. 
Although in reference 8 the lOS6 parameter is correlated d t h  the 
suction-surface  diffusion  parameter,  the  results of reference 9 indicate 
that  rotor  design  pressure-surface  diffusion is also an important 
consideration  and  that  improved  correlation of loss could  be  obtained 
when  based on the sum of the  suction- and pressure-surface affusion 
parameters. In view  of  the  preceding  considerationf3, a loss pameter 
based  on  over-all rotor performance.  correlated  with a total  surface 

. 
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diffusion paramter (equal  to  the sum of the  suction-  and  pressure-surface 
diffusion  parameters)  should  be  satisfactory in studying  rotor ~ O S S  char- 
acteristics.  The h s s  parameter  should, however, be Independent of the 
aperational  characteristics of the  turbine in order  to  have.more general 
validity. Thus, a more  basic  parameter than that  used  in  references 8 
and 9 is  desired. 

This report  describes  the  application  of an effective  rotor-blade 
momentum  thickness as a more  basic  parameter  for  use in studying  the 
loss characteristics  of  rotors. This momentum  thickness  is  defined  in 

over-all  performance  characteristics  instead of from  blade-wake  surveys. 
Included  in  this  report K L J ~  be (1) a description  of  the  method  used  to 
obtain  the  effective  rotor-blade  momentum  thickness using over-all tur- 
bine  performance,'stator  performance, and rotor  geametric  quantities; 
(2) the  correlation of this  effective  rotor-blade  mamenturn  thickness  ob- 
tained  for  the  series of transonic  turbines of references 5 to 9 with 

cu 
(3, 
cr) 

M a manner similar to  that in reference 1 except  that it is  obtained frm 

?! 
d design  total  surface  diffusion;  and (3) comparison of the  correlation 
P with that  obtained  fram  the  low-speed  two-dFmensional  cascade  results 
3 described  in  reference 11. 

1 

The  effective  rotor-blade  momentum  thickness  developed  herein is ob- 
tained  from  stator  design-point  performance,  over-all  turbine  desi@- 
point  performance,  and  rotor  geometric  quantities. In addition to the 
blade  profile  losses,  the  development will include  the  effect  of  inner- 
and  outer-wall  boundary-layer loss using the method of reference 3 
(which  is  described in appendix B of this  report} as well as the  effect 
of eng downstream of the  blade r o w s  Using the method of reference 1. 

Performance  Characteristics  and  Geometric  Quantities 

The  necessary  turbine  mer-a,ll  performance  chazacteristics  at de- 
sign  point  can be obtained  from  the  performance map a d  measured  turbine- 
inlet  conditions.  These  characteristics  are (1) equivalent  specific  work 

- output Ahl/@cr, (2) ratio of specific  heats y, (3) turbine-inlet  total 
temperature Tb, (4) turbine-inlet  total  pressure  pb,  and (5) turbine- 
outlet t o t a l  pressure pi .  (All symbols are  defined in appendix A, and 
the  station  nomenclature  is  described i n  fig. 1.) 

The  outlet  total  temperature TL was calculated  frcm  the  inlet 
total  temperature  and  turbine  work  output  ccrmputed frm torque,  speed, 
and  weight-flow  measurements.  The  inlet  and  outlet total pressures 
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w e r e  obtained  from  measured  static  pressures,  total  temperatures,  weight 
flow,  average  flow angle, and annulus area using the total-to-static 
pressure  relations given in  equation (B1) of appendix B. 

The  necessary s t a to r  performance  characteristics  at design point 
can be  obtained  fronstator  sunreys. The pertinent  parameter  needed 
for  the  subject 'analysis is  the  stator loss total-pressure  ratio  pk/pb, 
which  includes  the wall losses within  the  stator  passages  as  well as the 
nommiformities  at  the  blade  exit  but is corrected  for  the wall losses 
up  to  the  stator  leading  edge. 

The rotor  geometric  quantities used in the  development  are  based 
on mean-section  quantities.  These  quantities  are (I) stagger  angle 
%, (2) blade  solidity a, (3) aspect  ratio  based on blade  chord sf, 
and ( 4 )  ratio of .trailing-edge thickness to spacing  t/e. 

The  parameters  req.uired f r o m  the  rator design velocity diagrams are 
also  based on mean-section  values.  These  parameters  are (1) relative 
outlet  critical.  velocity  ratio (w/wmlfB ,m, and (2) relative  outlet 
flow  angle Pzi. 

The  rotor loss total-pressure  ratio pi& can  be  computed a8 fol- r 

lows: The over-dl total-pressure  ratio p4/pb can  be  expanded  to 
yield . .  . -  . . . . . . - . . . . . . . -. . . . . . -. . - . . . . - . . . .". . . . - . - - 

Because  the  relative  total  temperature  at a glven radius is constant for 
free  vortex  flow and approximately so for  the  other  types of flow, and 
because T i  is equal  to Tb, the  following  relation can be written: 

or 

. 
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. 

By substituting  equation (2) into  equation (I) and  rearranging  terms, 
the  rotor loss total-pressure  ratio can be  obtained  from 

Effective  Rotor-Blade  Momemturn  Thickness 

The  preceding  section shows how the rotor loss total-pressure 
ratio  pi/pi  can  be  obtained frm the  over-all  design  performance,  the 
turbine  geometric  quantities,  and  the  stator  surveys. In reference 3 a 
method  is  presented  for  determining  the loss total-pressure  ratio f o r  a 
blade  row  based on an effective  momentum  thickness 6tot. It  is  assumed 
in  the  reference  that this effective mmentum thickness  occurred  at  the 
blade  mean  section  and  that  it  represented  the  average  momentum loss per 
unit  surface  area,  for  the  blade  surfaces  and  the  end walls. In the  ref- 
erence  method  it  is  assumed that uniform flow  enters  the  rotor and the 
loss total-pressure  ratio  includes  the.effect of flow nonuniformities  at 
the  blade  exit. Thus the loss total-pressure  ratio  obtained  by  the 
method  of  reference 3 is  directly  ccmrparable with t h e  rotor loss total- 
pressure  ratio  obtained f ram  the  performance data. 

- 

The  effective  rotor-blade  momentum  thiclmess  can  be  ccmgputed  from 
the loss total-pressure  ratio  by applying the  method of refer- 
ence 3. In the  canputation  it is convenient to assume a ra,nge of Eltot 
or  preferably  Btot/c. For assumed values of Btot/c, values of 
Etot/c  can  be  estimated  by assuming a simple-power-law  velocity  profile 
with an exponent  of 1/7 for  the  boundary-layer  flow  and  by knowing the 
rotor-outlet  relative  critical  velocity  ratio  (W/WCrlf s,m,3. Although 
the form factor E, which  relates  6tot/c and stot/c,  is  appro-ted 
in  this  manner,  it can be  shown fram the  results  of  reference 1 that 
the loss total-prgssure  ratio  is  quite  insensitive to small inaccuracies 
in  the  value  of  Gtot/c. A curve of loss total-pressure  ratio as a func- 
tion of Btot/c can then  be  constructed. The value of loss total- 
pressure.ratfo,corresponding to that  computed frcm the  performance data 
then  defines  the - ratio of effective  rotor-blade  momentum  thickness  to 
chord  length  etOt/c' frcan t h i s  curve. A sample  calculation  is  included 
in appendix B that  demonstrates  this  procedure. 

- 
- - 

- 

- 

- 
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The i n l e t  and outlet   total   pressures (pb and pi,  respectively) 
used  herein  are  recognized as being somewhat lox, because  equation (El) 
assumes, in   e f fec t ,  a constant  velocity throughout the flow area. I n  
order t o  obtain an effective t o t a l  pressure at the  inlet   or  outlet ,  it 
would be  necessary t o  determine the nonuniformitLes of the flow. The 
effective  total   pressure would then be the t o t a l  pressure d t e r  mixing 
assuming continuity,  conservation of momentum, and conservation of 
energy in the mixing process (see ref .  1 2 ) .  The error in calculating 
the total  pressure by equation ( B l )  is a function of the  degree of non- 
uniformity 'and the mch  number level. Therefore ,  the e r ror  Fn t o t a l  
pressure at the turbine M e t  would be quite amall because the only m- 
uniformities a t  the i n l e t   m i s e  frm the wall boundary layers. Theo- 
re t ica l ly  it can  be shown that this error would be  about 0.003. A t  the 
turbine  outlet the error in t o t a l  pressure  casnot be estimated quanti- 
tat lvely,  because the degree of flow nonuniformity 2s not known. How- 
ever, it is  f e l t  that the  calculated t o t a l  pressure i s  reasonably  ac- 
curate because the m e a s u r i n g  s ta t ion i s  located &ally about  one-third 
of a chord length downstream of the t r a i l l ng  edge. Ln reference 13 it 
is shorn that .a rapid mixing occurs downstream of a blade row, and it is 
therefore   fe l t  that by the time the flow reaches  the  turbine-outlet 
measuring station much of the mixing has occurred. 

w 
tD 
PJ 
iA 

I. 

CUTS 

w h a t  
Dtot 
Dto t  

The-ratio of effective  rotor-blade  mentum  thickness  to chord 
length Btot/c was calculated at the design  point  for the transonic 
turbines of references 5 t o  9 and 14. The results of these  calculations 
are  presented i n  figure 2, where etOdc i s  presented as a m c t i o n  af 
the  design  total-surface  diffusion parameter Dtoz.  Inspection of this 
figure reveals that satisfactory  correlation of Qtot/c with Dtot oc- 

f o r  these rotors. The parameter 'Ztot/c is seen t o  increase same- 
l inearly from approximately 0.010 a t  D t o t  = 0.35 t o  0.014 at 
= 0.55; thereafter the curve hooks up t o  approldmately 0.0226 at 
= 0.66. 

Comparison of the trend of this correlation with that obtained i n  
reference 9 can be made from figure 3, where the specific  blade lose L 
is  presented as a f'ur~ction o f  Dto t .  The.major  difference between the 
trends of the two correlating  curves (figs. 2 and 3) occurs a t  high dif- 
fusions where the curve remains straight when using L as the loss 
parameter. The difference  occurs as a resul t  of the  design  requirements 
of the  turbine of reference 6 being slightly different fran those of the 
other  reference  turbines,  the  principal factor being the  rotor-outlet 
velocity  level. 
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N 
m 
(51 to 

As pointed  out i n   t h e  development section, it is assumed that the 
momentum loss is a function of the blad.e surface -ea. Also, when blades 
of high t u n i n g  are considered (as is  done herein), the chord is not 
representative of the average of the suction- and pressure-surface 
lengths (ref.  3) . Thus, a length more descriptive of the surface  length 
than c i s  desired when presenting mamenturn loss characteristics. One 
such length would be that of the blade mean  camber line. An improved 
parameter would then be the ratio-of  effective  rotor-blade momentum 
thickness t o  mean camber length €Jt&/2, which can be cmputed frcm the 
relation 

- - 
%ot - *tot  c 
"" 

2 c b  

- where  c/2 can be obtained from rotor geametry. et,& as a function of Dtot f o r ,  the reference 
rotors. The same trends that are shown in figure 

Flgure 4 presents 
transonic  turbine 
2 are  indicated  in 

figure 4, but the leve l  of the  curve in figure 4 is approxfmately 10 
percent lower because. the  value of c/2 i s  approximately 0.90 for  all 
the  reference  transonic  turbine  rotors. 

COMPARISON OF M O "  THICKNESSES OF " T S O K C C  ROTORS WITH 

THOSE OF TXIW-SPEED TWO-DIMENSIONAL CASCADES 

A cazrrparison of the ratLos of effective  rotor-b-lade momentum thick- 
ness t o  mean  camber length et0t/2 obtained  for  the  reference  transonic 
t u r b h e  r o t o r s  with the values  obtained f o r  a series of low- 
speed  two-dimensional cascades i s  presented i n  figure 5. The experi- 
mental data used for   the low-speed results  are  reported in reference ll 
in terms of a wake  momentum dffference  coefficient h. The method used 
t o  convert this parameter t o  that used in figure 5 i s  described in ref- 
erence 10. The data points  for the low-speed cascades shown Fn figure 5 
are  those  obtained a t  approximately  design turning. A l l  these data 
points  except two  were obtained with a very low value of turbulence a t  
the cascade in le t .  The two points w e r e  obtained with a turbulence gen- 
erator a t  the cascade in le t .  The curve  shorn f o r  the transonic  turbine 
rotors i s  reproduced fram figure 4 and  hence is shown as a function of 
the design  total  surface diffusion  parameter Dtot. The surface diffu- 
sion parameter used plottLng each low-speed cascade data point was 
obtained frm the measured static-pressure  distribution around the 
blade  (ref. ll) . 

7 .  

As shown by figure 5 the slopes of the two correlating  curves are 
approximately  equal  over the range of t o t a l  surface diffusion  parameters - 
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for  the  low-speed  cascade  tests.  It should be  noted,  however,  that 
there  is a sharp upward  trend i n  the curve for the transonic  turbine 
rotors  occurring  at  values  of Dtot greater than those  covered  by  the 
low-speed  cascade  tests,  The  correlating  curve  for  the  rotors  is also 
seen  to  be  higher than the  curve  for  the  low-speed cascade tests. Ae 
mentioned  previously,  most of the  low-speed data were  obtained  with very 
low inlet  turbulence,  whereas  the flow entering  the  transonic  turbine 
rotors  was highly turbulent. It is  felt that the  inlet  turbulence is 
one of the  most  important  factors  affecting  the  momentum loss. There- 
fore,  two  points  were  included fram reference J l  which  were  obtained by 
using a turbulence  generator  at  the  cascade met. AB shown in figure 
5, Qtot/2 is  increased  markedly  by  the  inlet  turbulence,  especially  at 
the  higher Flue of total  surface  afffusion  parameter.  Furthermore,  the 
values  of etot/Z obtained  for  the  transanic  turbine rotors  are  can- 
parable  with  those  obtained from the low-speed  cascade  blading  with Hgh 
inlet  turbulence. 

Also included in figure 5 is  the value of Kot/2 obtained  from 
the  stator  of  reference 4 at  the design point. Thia value was obtained 
with fairly turbulent  inlet conditions and  would  therefore  not  be ex- 
pected t o  agree with the  curve  for  the  cascade  data  ofreference 11. 
However, the  momentum loss  for the  stator of reference 4 agrees fafrly 
well with  that  obtained  from  the low-speed cascade  at Dtot of 0.085 
when  the  turbulence  generator was used  at  the  cascade  inlet. 

In addition  to--;the  inlet  turbulence  level  the fol louing factors may 
affect a comparison of the  transonic-turbine-rotor loss data w i t h  those 
obtained  from  the  low-speed  cascade: 

(1) The  higher  flow  velocities  for  &he  transonic  turbine  rotors may 
cause shock losses  that  would  increase  %ot/2 

(2) The  surface  diffusion  parameters  for the low-speed  cascade  blad- 
ing were  obtained  fram qerimental data, wbereas the Rot values for 
the  transonic-turbine-rotor  blades  were  obtained fram the design blade- 
loading diagrams and may differ smewhat from  the  actual experimental 
values. 

(3) Due to  -the  three-dfmensional  nature  of the flow i n  the rotor 
passage,  the  losses  are  ccrmplicated  by  secondary-flow  effects,  such as 
(a) passage  vortices  and  (b)  tip  clearance c!r scraping  vortices  (see 
ref. 15), and these  additional  effects may contribute  to  the  over-all 
loss picture. 

Although  these  factors may affect a comparison of these  two  type8 
of blading,  it  is  interesting t o  nate that there LE considerable 

CI1 
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simflarity i n  the  trends of the loss curves  obtained  for  the  low-speed 
cascade  blading  and  the  transonic-turbine-rotor  blades. Based m'the 
limited  amount of data  presented,  the  difference in loss magnitude  be- 
tween  the  two  curves (fig. 5) might  well be the  result of the  difference 
in inlet  turbulent  level. 

CONCLUDING REMCWCS 

This  report has presented  the use of an effective  rotor-blade mo- 
mentum  thickness in describing  rotor loss characteristics. This param- 
eter was then used in correlating  the  rotor  losses  obtained f o r  a series 
of transonic  turbines  with a design total surface diffusion  parameter. 
Because of the  inability of obtaining  measured diffusions on the  rotor- 
blade surfaces, a correlation of this  type f o r  rotors u t  be  restricted 
to  desigu  point,  where  the diffusion characteristics  are  felt to be 
known with  reasonable  accuracy. When means  for  experimentally  obtain- 
ing rotor  surface diff'usion characteristics  are  devlsed, this approach 
can then  be  extended  to off -design  regions. 

Lewis  Flight  Propulsion  Laboratory 
National  Advisory  Committee for Aeronautics 

Cleveland, Ohio, March 1, 1956 
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SYMBOLS 

The  following symbols are  used in this  report: 

parameter defined by  eq. (E%) 

annulus area, sq ft 

blade  surface  area, sq ft 

sum of inner- and outer-wall areas  within  blade  row, sq ft 

rotor  aspect  ratio,  ratio of rotor-blade  height to mean-section 
chord length 

parameter  defined  by  eq. (B7) 

wake  momentum  difference  coefficient  (see  ref. U) 

blade  mean-section  chord  length, ft 

specific heat at  constant  pressure,  Btu/(lb)(%) 

blade  surface dif'fusim parameter, 1 - velocity  after  diffusion velocity  before  diffusion 

.acceleration due to  gravity, 32.17 ft/sec 2 

form  f8CtOrj 610 

specific w o r k  output,  Btu/lb 

parameter  defined by eq. (B8) 

specific  blade loss ,  (1 - q)/u 
length of blade mean camber line, f t 

number of blades 

exgonent  used in 
ity  profile. .. 

describing  simgle-power-law boundary-layer veluc- c 

. .  . . . - . . - . . . . . . . . . . . . . . . - . . - 
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K) cu rn 
M 

P 

R 

r 

S 

T 

t 

v 
w 
W 

a 

as 

P 

r 
6 

%e 

E* 
- 
6 

8 

t 

absolute  pressure, lb/sq ft 

gas comtmt J ft/% 

radius , ft 
rotor-blade  spacing  at  mean  section, ft 

temperature , ‘R 
rotor-blade  trailing-edge  thickness  at mean section, ft 

absolute gas velocity,  ft/sec 

relative gas velocity,  ft/sec 

weight  flow,  Ib/sec 

absolute  gas-flow  angle  measured frm axial direction,  deg 

rotor-blade  mean-section  stagger  angle  measured  frcm axial dfrec- 
tian, deg 

relative  gas-flow  angle  at m e a n  section  measured  frcm axial direc- 
tion, deg 

ratio  of  specific  heats 

displacement  thickness, ft 

ratio  of  tangential  projection of trailing-edge  thickness  to spac- 
ing, t/s COB $ 

displacement  thickness,  6tot/s COB p 

effective  displacement  thickness, ft 

function of 

ratio of inlet-air  total  pressure to NACA standard sea-level  pres- 
erne, P& 
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adiabatic  efficiency,  ratio of turbine work based on torque, 
weight flow, and speed  measurements to ideal  work  based on inlet 
total  temperature,  inlet total pressure, and outlet  total 
pressure . .  

squared  ratio of critical  velocity  at  turbine  inlet  to  critical 
velocity  at NACA standard  sea-level  teqperature,  (Vcr,O/Vcr,st I Z  

momentum  thickness,  ft 

effective  rotor-blade mmentum tbickness  based on turbine  over-all. 
performance, f t 

momentum-thkkness  parameter, Bt-t-6 COB B 

gas  density,  Ib/cu ft 

rotor-blade  mean-section  solidity,  c/s 

Subscripts : 

cr 

fs 

m 

r 

sz 

tot 

X 

2d 

3d 

0 

1 

2 

3 

conditions at Mach number of 1.0 

conditions  in  free  stream or that  region  between  blade  wakes 

mean  radius ... - -  

rotor 

NACA standard sea-level  conditions 

sum  of  suction- and preseure-surface  quantities 

axial  direction 

two dimensional 

three  dimensional 

station  upstream of turbine  stator 

station  just  downstream of stator trailing  edge 

station  at  rotor  entrance 

station j u s t  dawnstream of rotor  trailing  edge 

- 

. .  . - . . . . . . . . - . " -. . . . . . . . . . . . - .. . ". . . 

L 
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4 stat ion downstream of rotor where chcumferentially uniform condi- 
t ions axe assumed t o  exist 

Sugerscripts: 

I absolute   total  state 

relative  total .  state 11 
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The general development of the method used to calculate as effec- 
t i ve  maanentum thickness  for  rotors i s  given i n   t h e  body of 'the  report. 
Further details of €he method are  given i n  the  following example, 

Required  Performance,  Design, and Geometric Quantities 

The performance, design, and  geometric q w t i t i e e  required t o  cal- 
culate an effective rotor-blade mmeentum tPlickness are 

Equivalent spclfic work output, Ah'/@cr,  Btu/lb . . . . . . . .  
Ratio of specific  heats, y- . . . . . . . . . . . . . . . . . . .  
Specific  heat  at  constantrpressure ,"p . . . . . . . . . . . . .  
In le t  total temgerature, TA, % . . . . . . . . . . . . . . . .  
Equivalent w e i g h t  flow,  WE-&/^, lb/sec . 
Inlet   to ta l   pressure,  pb, lb/sq f t  . . . . .  
Rotor-blade  stagger angle, us, deg . . . . .  
Rotor-blade  solidity, (5 . . . . . . . . . .  
Rotor-blade  aspect ratio, sf . . . . . . . .  
Rotor-blade  trailing-edge  thickness, t, in. 
Number of rotor  blades, N . . . . . . . . .  
Rotor mean-section radius, rm, in.  . . . .  
Rotor-exit re lat ive f l o w  angle, BJ, deg . . 
Rotor.-exit re la t ive  cr i t ical   veloci ty   ra t io ,  

. . . . . . . . . .  

. . . . . . . . . .  

. . . . . . . . . .  . . . . . . . . . .  
. .  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  

23.03 
1.4 

0.24 
5l8.7 

21.95 
2U6 . 2 - 
12.5 

1.816 - 
0.773 
0.930 

25 
5.95 
41.0 
1.02 

Outlet total   pressure,  p ' ,  lb/sq f t  . . . . . . . . . . . . . .  916.3 
4 

Calculation of Rotor Loss Total-Pressure Ratio 

The s ta tor- inlet  total pressure p& w a s  calculated on the basis oQ 

continuity from the  inlet   static  pressure po (averaged f r m   e t a t i c  pres- 
sures measured a t  the hub and t ip ) ,  measured i n l e t  t o t a l  temperature T6, 
measured w e i g h t  flow w, and the annulus area A, by using equation (2)  
of reference 16  rearranged i n  the following form: 

. 
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The  right  side of equation (BI) is  divided by cos i n  order  that  the 
product  Aacos a0 would  represent  the  area  perpendicular to the flow. 
For  this  example  pb  is 2ll6.2 pounds per  square  foot  and T6 is 
518.7O R (standard  sea-level  conditions) ; therefore,  the symbols defin- 
ing  equivalent  conditions  are  herehafter  dropped f r m  the  equations. 

The  average  turbine-outlet  total  temperature was then  obtained  fram 
T' = T& - Ah1/cP = 422.70 R. 4 

The  average  turbine-outlet  static  pressure p4 w&s obtained in a 
manner similar to  that  for  the  turbine  inlet,  and  the  outlet  total  pres- 
sure p4, was calculated from equatlcm (B1) . The  resulting  turbine  over- 
all total-pressure 

The  stator  of 

ratio was 

this  examDle  turbine is described in reference 14, 
The  reported  stator loss total-pressure  ratio,  which  included  the w a l l  
losses within the  stator  passage  as  well as the  effect of the nonuni- 
formities at the  blade  exit  but was corrected for, the wall losses  up to 
the  stator  leading  edge, was 

at a *si=  (V/Vcr)fs,m,l of 1.n. Because  the  turbine-inlet  and 
-outlet  total  pressures  were  calculated on the  basis of continuity in 
the  manner  previously  outlined,  the loss in total  pressure along the 
inner  and  outer walls upstream of the stator lea- edge w&6 not in- 
cluded;  therefore,  the'stator loss total-pressure  ratio was corrected 
for  the wall loss. 

The  rotor loss total-pressure  ratio can be  calculated  fram 

to  be 0.912. 
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Determination of Effective Rotor-Blade Momentum Thickness 

A method of calculating a loss  total-pressure  ratio  for a three- 
dimensional blade row from conditions at the   t ra i l ing  edge of t he  blade 
mean section is  presented i n  reference 3. Because velocity  profiles at 
the rotor  trailing edge are not  elrperimentally  obtainable at present, it 
is necessary t o  determine bg i t e ra t ion  a r a t i o  of effective momentum 
thicknes+ t o  chord length Btot/c at the mean section  that w i l l  resul t  
i n  the rotor  LOSS total-gressure  ratio  equal t o  that calculated from 
performance data. In Lhe actual  calculation f o r  t h i s  example turbine, 
a range of values-of Btot/c were. assumed and corresponding va lues  of 
rotor loss total-pressure  ratio  pi/pz were calculated. Then the  value 
of Btot/c corresponding t o  the value of pl/pi  in  equation (3)" was 
obtained from figure 6. However, for  this  example, the value of gtot/c 
of 0.0138 corresponding to  the  calculated pi/pz of0.912 (see f ig .  6) 
wa6 chosen i n  order fo eliminate the iteration  process. 

- 

The  method of reference 3 for  calculating a loss total-pressure 
ratio  requires that the  effective momentum thickness @tot and the 
trailing-edge thickness t be expressed i n  terms of tangential  values 
per  unit  of blade spacing. The corresponding momentum-thickness param- 
eter is given  by 

- 

- * - 
@to t  - %t d 

%2d = s cos p3 c cos p3 " = 0.0352 

The  momentum-thickness Wameter has t o  be modified t o  obtain an equiva- 
l en t  three-dimensional -ession  which includes  the  effects of the end 
walls of the  blade passage. In reference 3 t he   r a t io  of the  three- 
dimensional a r ea   t o   t he  two-dimensional area was approximated  by 

Thus, d t h  the asme# momentum loss distribution over the end w a l l s  and 
the  blade surfaces, er,2d of equation (13s) caa be modified t o  a three- 
dimensional value by 

= %,2d d U  

* (1 + 'Os ") = 0.0563 
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m cu 
m 
M 

As pointed  out in  reference 3, the blockage due to   t he   t r a i l i ng -  
edge thickness, expressed as a percentage of t he   t o t a l  f low ma, would 
be the  same for the  three-dimensional concept as fo r   t he  two-dimensional 
case. Thus, 

t - = 0.0266 
%e,r, 2d = %e,,, 3d - p3 (E) 

An apprgximate value of the  thee-dimensional  displacement-thickness 
parameter 6r,3d required i n   t h e  method of reference 3 can be  calculated 
f r o m  e, 3d and a theoretical  form factor H for  a simple-power-law 
velocity  profile having  an exponent n of 1/7 as discussed i n   t h i s  re- 
port. Therefore, from figure 7 (which is  fig. 4 of ref. 3), which gives 
H as a function of t he  free-stream cri t ical   veloci ty   ra t io ,  H = 1.76 
for  (W/Wcr fs , m, 3 of 1.02. Thus, 

* 6r, = Her,= = 0.0991 * 

 he values for  $,sa> Er, ste,r, ~ 3 ,  and (w/wcr)fs,m,3 were 
* 

used t o  compute pi/pz by substi tution in  equations (M), (C16), (C18) ,  

(C20), (C21), and (C22) of reference 1, which axe rewritten  herein  with 
the  symbols of this  report:  
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Figure 1. - Description of turbine and station  nomenclature.  
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Figure 2. - Variation in ratio of momentum  thickness 
to chord  length with surface diff'ueion for  refer- 
ence  transonic turbines. 
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c 

Design t o t a l  surface diffusion parameter, D t o t  

Figure 3. - Variation in  specific bletde 106s with 
design t o t a l  surface diff’usion parameter for 
reference transonic turbines. 
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Figure 4. - Variation in r a t i o  of ef fec t ive  rotor- 
blade momentum thickness t o  mean camber length 
w i t h  design t o t a l  surface diffusion parameter. 
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Ratio of effective  rotor-blade - momentum thickness 
t o  chord length, 6tot/c 

Figure 6. - Variation of rotor loss total -pressure  ra t io  
with r a t i o  of effectfve rotor-blade momentum thickness 
t o  chord  length. 



< 
L 

Figure 7 .  - Variation ln form factor H vith free-stream  critical velocity  ratio 
for  simple-power-law velocity profile haping w n e n t  n = 1/7 (fig. 4 of ref. 3). 
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